Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 836, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573449

RESUMEN

The coexistence of two pools of ATP synthase in mitochondria has been largely neglected despite in vitro indications for the existence of reversible active/inactive state transitions in the F1-domain of the enzyme. Herein, using cells and mitochondria from mouse tissues, we demonstrate the existence in vivo of two pools of ATP synthase: one active, the other IF1-bound inactive. IF1 is required for oligomerization and inactivation of ATP synthase and for proper cristae formation. Immunoelectron microscopy shows the co-distribution of IF1 and ATP synthase, placing the inactive "sluggish" ATP synthase preferentially at cristae tips. The intramitochondrial distribution of IF1 correlates with cristae microdomains of high membrane potential, partially explaining its heterogeneous distribution. These findings support that IF1 is the in vivo regulator of the active/inactive state transitions of the ATP synthase and suggest that local regulation of IF1-ATP synthase interactions is essential to activate the sluggish ATP synthase.


Asunto(s)
Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Ratones , Animales , ATPasas de Translocación de Protón Mitocondriales/genética , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo
2.
Biochem Soc Trans ; 51(3): 1191-1199, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222266

RESUMEN

RAS proteins are small GTPases that transduce signals from membrane receptors to signaling pathways that regulate growth and differentiation. Four RAS proteins are encoded by three genes - HRAS, KRAS, NRAS. Among them, KRAS is mutated in human cancer more frequently than any other oncogene. The KRAS pre-mRNA is alternatively spliced to generate two transcripts, KRAS4A and KRAS4B, that encode distinct proto-oncoproteins that differ almost exclusively in their C-terminal hypervariable regions (HVRs) that controls subcellular trafficking and membrane association. The KRAS4A isoform arose 475 million years ago in jawed vertebrates and has persisted in all vertebrates ever since, strongly suggesting non-overlapping functions of the splice variants. Because KRAS4B is expressed at higher levels in most tissues, it has been considered the principal KRAS isoform. However, emerging evidence for KRAS4A expression in tumors and splice variant-specific interactions and functions have sparked interest in this gene product. Among these findings, the KRAS4A-specific regulation of hexokinase I is a stark example. The aim of this mini-review is to provide an overview of the origin and differential functions of the two splice variants of KRAS.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Mutación
3.
Front Cell Dev Biol ; 10: 1033348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393833

RESUMEN

The three mammalian RAS genes (HRAS, NRAS and KRAS) encode four proteins that play central roles in cancer biology. Among them, KRAS is mutated more frequently in human cancer than any other oncogene. The pre-mRNA of KRAS is alternatively spliced to give rise to two products, KRAS4A and KRAS4B, which differ in the membrane targeting sequences at their respective C-termini. Notably, both KRAS4A and KRAS4B are oncogenic when KRAS is constitutively activated by mutation in exon 2 or 3. Whereas KRAS4B is the most studied oncoprotein, KRAS4A is understudied and until recently considered relatively unimportant. Emerging work has confirmed expression of KRAS4A in cancer and found non-overlapping functions of the splice variants. The most clearly demonstrated of these is direct regulation of hexokinase 1 by KRAS4A, suggesting that the metabolic vulnerabilities of KRAS-mutant tumors may be determined in part by the relative expression of the splice variants. The aim of this review is to address the most relevant characteristics and differential functions of the KRAS splice variants as they relate to cancer onset and progression.

4.
Oncogenesis ; 11(1): 24, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534478

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.

5.
Hum Mol Genet ; 30(24): 2441-2455, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34274972

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a neuropathy that lacks effective therapy. CMT patients show degeneration of peripheral nerves, leading to muscle weakness and loss of proprioception. Loss of mitochondrial oxidative phosphorylation proteins and enzymes of the antioxidant response accompany degeneration of nerves in skin biopsies of CMT patients. Herein, we followed a drug-repurposing approach to find drugs in a Food and Drug Administration-approved library that could prevent development of CMT disease in the Gdap1-null mouse model. We found that the antibiotic florfenicol is a mitochondrial uncoupler that prevents the production of reactive oxygen species and activates respiration in human GDAP1-knockdown neuroblastoma cells and in dorsal root ganglion neurons of Gdap1-null mice. Treatment of CMT-affected Gdap1-null mice with florfenicol has no beneficial effect in the course of the disease. However, administration of florfenicol, or the antioxidant MitoQ, to pre-symptomatic GDAP1-null mice prevented weight gain and ameliorated the motor coordination deficiencies that developed in the Gdap1-null mice. Interestingly, both florfenicol and MitoQ halted the decay in mitochondrial and redox proteins in sciatic nerves of Gdap1-null mice, supporting that oxidative damage is implicated in the etiology of the neuropathy. These findings support the development of clinical trials for translation of these drugs for treatment of CMT patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética
6.
Oncogene ; 40(27): 4538-4551, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34120142

RESUMEN

SOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function.


Asunto(s)
Dinámicas Mitocondriales , Homeostasis , Factores de Intercambio de Guanina Nucleótido ras
7.
Cancers (Basel) ; 12(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092171

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) play a crucial role in suppressing the immunosurveillance function of the immune system that prevents tumor growth. Indeed, macrophages can also be targeted by different chemotherapeutic agents improving the action over immune checkpoints to fight cancer. Here we describe the effect of trabectedin and lurbinectedin on human macrophage cell viability and function. METHODS: Blood monocytes from healthy donors were differentiated into macrophages and exposed to different stimuli promoting functional polarization and differentiation into tumor-associated macrophages. Cells were challenged with the chemotherapeutic drugs and the effects on cell viability and function were analyzed. RESULTS: Human macrophages exhibit at least two different profiles in response to these drugs. One-fourth of the blood donors assayed (164 individuals) were extremely sensitive to trabectedin and lurbinectedin, which promoted apoptotic cell death. Macrophages from other individuals retained viability but responded to the drugs increasing reactive oxygen production and showing a rapid intracellular calcium rise and a loss of mitochondrial oxygen consumption. Cell-membrane exposure of programmed-death ligand 1 (PD-L1) significantly decreased after treatment with therapeutic doses of these drugs, including changes in the gene expression profile of hypoxia-inducible factor 1 alpha (HIF-1α)-dependent genes, among other. CONCLUSIONS: The results provide evidence of additional onco-therapeutic actions for these drugs.

8.
Nat Commun ; 11(1): 3606, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681016

RESUMEN

Mitochondrial metabolism has emerged as a promising target against the mechanisms of tumor growth. Herein, we have screened an FDA-approved library to identify drugs that inhibit mitochondrial respiration. The ß1-blocker nebivolol specifically hinders oxidative phosphorylation in cancer cells by concertedly inhibiting Complex I and ATP synthase activities. Complex I inhibition is mediated by interfering the phosphorylation of NDUFS7. Inhibition of the ATP synthase is exerted by the overexpression and binding of the ATPase Inhibitory Factor 1 (IF1) to the enzyme. Remarkably, nebivolol also arrests tumor angiogenesis by arresting endothelial cell proliferation. Altogether, targeting mitochondria and angiogenesis triggers a metabolic and oxidative stress crisis that restricts the growth of colon and breast carcinomas. Nebivolol holds great promise to be repurposed for the treatment of cancer patients.


Asunto(s)
Antagonistas Adrenérgicos/farmacología , Inductores de la Angiogénesis/farmacología , Neoplasias de la Mama/fisiopatología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Mitocondrias/efectos de los fármacos , Nebivolol/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Femenino , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo
9.
EMBO J ; 39(14): e103812, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32488939

RESUMEN

It is controversial whether mitochondrial dysfunction in skeletal muscle is the cause or consequence of metabolic disorders. Herein, we demonstrate that in vivo inhibition of mitochondrial ATP synthase in muscle alters whole-body lipid homeostasis. Mice with restrained mitochondrial ATP synthase activity presented intrafiber lipid droplets, dysregulation of acyl-glycerides, and higher visceral adipose tissue deposits, poising these animals to insulin resistance. This mitochondrial energy crisis increases lactate production, prevents fatty acid ß-oxidation, and forces the catabolism of branched-chain amino acids (BCAA) to provide acetyl-CoA for de novo lipid synthesis. In turn, muscle accumulation of acetyl-CoA leads to acetylation-dependent inhibition of mitochondrial respiratory complex II enhancing oxidative phosphorylation dysfunction which results in augmented ROS production. By screening 702 FDA-approved drugs, we identified edaravone as a potent mitochondrial antioxidant and enhancer. Edaravone administration restored ROS and lipid homeostasis in skeletal muscle and reinstated insulin sensitivity. Our results suggest that muscular mitochondrial perturbations are causative of metabolic disorders and that edaravone is a potential treatment for these diseases.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Lipogénesis , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Animales , Ratones , Ratones Transgénicos
10.
Cancers (Basel) ; 12(3)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183017

RESUMEN

Photodynamic Therapy (PDT) with methyl-aminolevulinate (MAL-PDT) is being used for the treatment of Basal Cell Carcinoma (BCC), although resistant cells may appear. Normal differentiated cells depend primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate energy, but cancer cells switch this metabolism to aerobic glycolysis (Warburg effect), influencing the response to therapies. We have analyzed the expression of metabolic markers (ß-F1-ATPase/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratio, pyruvate kinase M2 (PKM2), oxygen consume ratio, and lactate extracellular production) in the resistance to PDT of mouse BCC cell lines (named ASZ and CSZ, heterozygous for ptch1). We have also evaluated the ability of metformin (Metf), an antidiabetic type II compound that acts through inhibition of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway to sensitize resistant cells to PDT. The results obtained indicated that resistant cells showed an aerobic glycolysis metabolism. The treatment with Metf induced arrest in the G0/G1 phase and a reduction in the lactate extracellular production in all cell lines. The addition of Metf to MAL-PDT improved the cytotoxic effect on parental and resistant cells, which was not dependent on the PS protoporphyrin IX (PpIX) production. After Metf + MAL-PDT treatment, activation of pAMPK was detected, suppressing the mTOR pathway in most of the cells. Enhanced PDT-response with Metf was also observed in ASZ tumors. In conclusion, Metf increased the response to MAL-PDT in murine BCC cells resistant to PDT with aerobic glycolysis.

11.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165721, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057942

RESUMEN

Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma/patología , Metabolismo Energético/efectos de los fármacos , Mitocondrias/enzimología , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinoma/tratamiento farmacológico , Carcinoma/genética , Carcinoma/mortalidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo , Metabolismo Energético/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Mitocondrias/efectos de los fármacos , Mutación , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia , Regulación hacia Arriba
12.
FASEB J ; 34(1): 410-431, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914684

RESUMEN

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and control biological processes (BPs), including fibrogenesis. Kidney fibrosis remains a clinical challenge and miRNAs may represent a valid therapeutic avenue. We show that miR-9-5p protected from renal fibrosis in the mouse model of unilateral ureteral obstruction (UUO). This was reflected in reduced expression of pro-fibrotic markers, decreased number of infiltrating monocytes/macrophages, and diminished tubular epithelial cell injury and transforming growth factor-beta 1 (TGF-ß1)-dependent de-differentiation in human kidney proximal tubular (HKC-8) cells. RNA-sequencing (RNA-Seq) studies in the UUO model revealed that treatment with miR-9-5p prevented the downregulation of genes related to key metabolic pathways, including mitochondrial function, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and glycolysis. Studies in human tubular epithelial cells demonstrated that miR-9-5p impeded TGF-ß1-induced bioenergetics derangement. The expression of the FAO-related axis peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-peroxisome proliferator-activated receptor alpha (PPARα) was reduced by UUO, although preserved by the administration of miR-9-5p. We found that in mice null for the mitochondrial master regulator PGC-1α, miR-9-5p was unable to promote a protective effect in the UUO model. We propose that miR-9-5p elicits a protective response to chronic kidney injury and renal fibrosis by inducing reprogramming of the metabolic derangement and mitochondrial dysfunction affecting tubular epithelial cells.


Asunto(s)
Reprogramación Celular , Fibrosis/prevención & control , Regulación de la Expresión Génica , Enfermedades Renales/prevención & control , MicroARNs/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Obstrucción Ureteral/prevención & control , Animales , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transcriptoma , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
13.
Cancers (Basel) ; 12(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861681

RESUMEN

Increasing evidences show that the ATPase Inhibitory Factor 1 (IF1), the physiological inhibitor of the ATP synthase, is overexpressed in a large number of carcinomas contributing to metabolic reprogramming and cancer progression. Herein, we show that in contrast to the findings in other carcinomas, the overexpression of IF1 in a cohort of colorectal carcinomas (CRC) predicts less chances of disease recurrence, IF1 being an independent predictor of survival. Bioinformatic and gene expression analyses of the transcriptome of colon cancer cells with differential expression of IF1 indicate that cells overexpressing IF1 display a less aggressive behavior than IF1 silenced (shIF1) cells. Proteomic and functional in vitro migration and invasion assays confirmed the higher tumorigenic potential of shIF1 cells. Moreover, shIF1 cells have increased in vivo metastatic potential. The higher metastatic potential of shIF1 cells relies on increased cFLIP-mediated resistance to undergo anoikis after cell detachment. Furthermore, tumor spheroids of shIF1 cells have an increased ability to escape from immune surveillance by NK cells. Altogether, the results reveal that the overexpression of IF1 acts as a tumor suppressor in CRC with an important anti-metastatic role, thus supporting IF1 as a potential therapeutic target in CRC.

14.
J Immunother Cancer ; 7(1): 151, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196176

RESUMEN

BACKGROUND: Binding of the programmed death-1 (PD-1) receptor to its ligands (PD-L1/2) transduces inhibitory signals that promote exhaustion of activated T cells. Blockade of the PD-1 pathway is widely used for cancer treatment, yet the inhibitory signals transduced by PD-1 in T cells remain elusive. METHODS: Expression profiles of human CD8+ T cells in resting, activated (CD3 + CD28) and PD-1-stimulated cells (CD3 + CD28 + PD-L1-Fc) conditions were evaluated by RNA-seq. Bioinformatic analyses were used to identify signaling pathways differentially regulated in PD-1-stimulated cells. Metabolic analyses were performed with SeaHorse technology, and mitochondrial ultrastructure was determined by transmission electron microscopy. PD-1-regulated mitochondrial genes were silenced using short-hairpin RNA in primary cells. Blue native gel electrophoresis was used to determine respiratory supercomplex assembly. RESULTS: PD-1 engagement in human CD8+ T cells triggers a specific, progressive genetic program different from that found in resting cells. Gene ontology identified metabolic processes, including glycolysis and oxidative phosphorylation (OXPHOS), as the main pathways targeted by PD-1. We observed severe functional and structural alterations in the mitochondria of PD-1-stimulated cells, including a reduction in the number and length of mitochondrial cristae. These cristae alterations were associated with reduced expression of CHCHD3 and CHCHD10, two proteins that form part of the mitochondrial contact site and cristae organizing system (MICOS). Although PD-1-stimulated cells showed severe cristae alterations, assembly of respiratory supercomplexes was unexpectedly greater in these cells than in activated T cells. CHCHD3 silencing in primary CD8+ T cells recapitulated some effects induced by PD-1 stimulation, including reduced mitochondrial polarization and interferon-γ production following T cell activation with anti-CD3 and -CD28 activating antibodies. CONCLUSIONS: Our results suggest that mitochondria are the main targets of PD-1 inhibitory activity. PD-1 reprograms CD8+ T cell metabolism for efficient use of fatty acid oxidation; this mitochondrial phenotype might explain the long-lived phenotype of PD-1-engaged T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Mitocondrias/inmunología , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Células Cultivadas , Expresión Génica/inmunología , Glucólisis , Células HEK293 , Humanos , Leucocitos Mononucleares , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/inmunología , Fosforilación Oxidativa , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología
15.
FASEB J ; 33(2): 1836-1851, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30204502

RESUMEN

The ATPase inhibitory factor 1 (IF1) is an intrinsically disordered protein that regulates the activity of the mitochondrial ATP synthase. Phosphorylation of S39 in IF1 prevents it from binding to the enzyme and thus abolishes its inhibitory activity. Dysregulation of IF1 is linked to different human diseases, providing a relevant biomarker of cancer progression. However, the tissue content of IF1 relative to the abundance of the ATP synthase is unknown. In this study, we characterized the tissue-specific expression of IF1 in human and mouse tissues and quantitated the content of IF1 and of ATP synthase. We found relevant differences in IF1 expression between human and mouse tissues and found that in high-energy-demanding tissues, the molar content of IF1 exceeds that of the ATP synthase. In these tissues, a fraction of IF1 is bound to the enzyme, and the other fraction is phosphorylated and hence is unable to bind the enzyme. Post-transcriptional control accounts for most of the regulated expression of IF1, especially in mouse heart, where IF1 mRNA translation is repressed by the leucine-rich pentatricopeptide repeat containing protein. Overall, these findings enlighten the cellular biology of IF1 and pave the way to development of additional models that address its role in pathophysiology.-Esparza-Moltó, P. B., Nuevo-Tapioles, C., Chamorro, M., Nájera, L., Torresano, L., Santacatterina, F., Cuezva, J. M. Tissue-specific expression and post-transcriptional regulation of the ATPase inhibitory factor 1 (IF1) in human and mouse tissues.


Asunto(s)
Proteínas/fisiología , Procesamiento Postranscripcional del ARN , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética
16.
Front Oncol ; 7: 69, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443245

RESUMEN

Partial suppression of mitochondrial oxidative phosphorylation and the concurrent activation of aerobic glycolysis is a hallmark of proliferating cancer cells. Overexpression of the ATPase inhibitory factor 1 (IF1), an in vivo inhibitor of the mitochondrial ATP synthase, is observed in most prevalent human carcinomas favoring metabolic rewiring to an enhanced glycolysis and cancer progression. Consistently, a high expression of IF1 in hepatocarcinomas and in carcinomas of the lung, bladder, and stomach and in gliomas is a biomarker of bad patient prognosis. In contrast to these findings, we have previously reported that a high expression level of IF1 in breast carcinomas is indicative of less chance to develop metastatic disease. This finding is especially relevant in the bad prognosis group of patients bearing triple-negative breast carcinomas. To investigate the molecular mechanisms that underlie the differential behavior of IF1 in breast cancer progression, we have developed the triple-negative BT549 breast cancer cell line that overexpresses IF1 stably. When compared to controls, IF1-cells partially shut down respiration and enhance aerobic glycolysis. Transcriptomic analysis suggested that migration and invasion were specifically inhibited in IF1-overexpressing breast cancer cells. Analysis of gene expression by qPCR and western blotting indicate that IF1 overexpression supports the maintenance of components of the extracellular matrix (ECM) and E-cadherin concurrently with the downregulation of components and signaling pathways involved in epithelial to mesenchymal transition. The overexpression of IF1 in breast cancer cells has no effect in the rates of cellular proliferation and in the cell death response to staurosporine and hydrogen peroxide. However, the overexpression of IF1 significantly diminishes the ability of the cells to grow in soft agar and to migrate and invade when compared to control cells. Overall, the results indicate that IF1 overexpression despite favoring a metabolic phenotype prone to cancer progression in the specific case of breast cancer cells also promotes the maintenance of the ECM impeding metastatic disease. These findings hence provide a mechanistic explanation to the better prognosis of breast cancer patients bearing tumors with high expression level of IF1.

17.
Cell Mol Life Sci ; 74(12): 2151-2166, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28168445

RESUMEN

The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.


Asunto(s)
Hormesis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Animales , Núcleo Celular/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología
18.
Cell Rep ; 12(12): 2143-55, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26387949

RESUMEN

The mitochondrial H(+)-ATP synthase synthesizes most of cellular ATP requirements by oxidative phosphorylation (OXPHOS). The ATPase Inhibitory Factor 1 (IF1) is known to inhibit the hydrolase activity of the H(+)-ATP synthase in situations that compromise OXPHOS. Herein, we demonstrate that phosphorylation of S39 in IF1 by mitochondrial protein kinase A abolishes its capacity to bind the H(+)-ATP synthase. Only dephosphorylated IF1 binds and inhibits both the hydrolase and synthase activities of the enzyme. The phosphorylation status of IF1 regulates the flux of aerobic glycolysis and ATP production through OXPHOS in hypoxia and during the cell cycle. Dephosphorylated IF1 is present in human carcinomas. Remarkably, mouse heart contains a large fraction of dephosphorylated IF1 that becomes phosphorylated and inactivated upon in vivo ß-adrenergic stimulation. Overall, we demonstrate the essential function of the phosphorylation of IF1 in regulating energy metabolism and speculate that dephosho-IF1 might play a role in signaling mitohormesis.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias Cardíacas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Animales , Sitios de Unión , Bucladesina/farmacología , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Pruebas de Enzimas , Regulación de la Expresión Génica , Glucólisis/efectos de los fármacos , Glucólisis/genética , Células HCT116 , Humanos , Isoquinolinas/farmacología , Cinética , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Miocardio/citología , Miocardio/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación , Unión Proteica , Proteínas/química , Proteínas/genética , Transducción de Señal , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA